Enhanced Breaking of Lignin and Mesopore Formation in Zinc Chloride Assisted Hydrothermal Carbonization of Waste Biomasses

Author:

Multhaupt Hendrik,Bottke PatrickORCID,Wark MichaelORCID

Abstract

Hydrochars from hydrothermal carbonization of different biowaste materials (dried dandelion, sawdust, coconut shell powder) formed in the presence of aqueous salt solutions were compared to those obtained by the common method in pure water. Hydrochars with increased carbon contents, pore volume and surface areas were specifically obtained from coconut shell powder in the presence of zinc chloride. Compositional and structural changes within the hydrochar products caused by the process conditions and/or the additive were characterized by solid state 13C NMR spectroscopy, proving that cellulose and, in particular, lignin units in the biomass are more easily attacked in the presence of the salt. Under saline conditions, a distinct particle break-up led to the creation of mesoporosity, as observable from hysteresis loops in nitrogen adsorption isotherms, which were indicative of the presence of pores with diameters of about 3 to 10 nm. The obtained hydrochars were still rich in functional groups which, together with the mesoporosity, indicates the compounds have a high potential for pollutant removal. This was documented by adsorption capacities for the methylene blue and methyl orange dyes, which exceeded the values obtained for other hydrochar-based adsorbers. A subsequent physical activation of the mesoporous hydrochars in steam at different temperatures and times resulted in a further drastic increase in the surface areas, of up to about 750 m2/g; however, this increase is mainly due to micropore formation coupled with a loss of surface functionality. Consequently, the adsorption capacity for the quite large dyes does not provide any further benefit, but the uptake of smaller gas molecules is favored.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3