Low-Resource Neural Machine Translation Improvement Using Source-Side Monolingual Data

Author:

Tonja Atnafu LambeboORCID,Kolesnikova OlgaORCID,Gelbukh AlexanderORCID,Sidorov Grigori

Abstract

Despite the many proposals to solve the neural machine translation (NMT) problem of low-resource languages, it continues to be difficult. The issue becomes even more complicated when few resources cover only a single domain. In this paper, we discuss the applicability of a source-side monolingual dataset of low-resource languages to improve the NMT system for such languages. In our experiments, we used Wolaytta–English translation as a low-resource language. We discuss the use of self-learning and fine-tuning approaches to improve the NMT system for Wolaytta–English translation using both authentic and synthetic datasets. The self-learning approach showed +2.7 and +2.4 BLEU score improvements for Wolaytta–English and English–Wolaytta translations, respectively, over the best-performing baseline model. Further fine-tuning the best-performing self-learning model showed +1.2 and +0.6 BLEU score improvements for Wolaytta–English and English–Wolaytta translations, respectively. We reflect on our contributions and plan for the future of this difficult field of study.

Funder

Mexican Government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference42 articles.

1. Information retrieval system and machine translation: A review;Madankar;Procedia Comput. Sci.,2016

2. Kenny, D. (2018). The Routledge Handbook of Translation and Philosophy, Routledge.

3. Bahdanau, D., Cho, K.H., and Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv.

4. Making sense of neural machine translation;Forcada;Transl. Spaces,2017

5. Nekoto, W., Marivate, V., Matsila, T., Fasubaa, T., Kolawole, T., Fagbohungbe, T., Akinola, S.O., Muhammad, S.H., Kabongo, S., and Osei, S. (2020). Participatory research for low-resourced machine translation: A case study in african languages. arXiv.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Preserving Sasak Dialectal Features in English to Sasak Machine Translation through Locked Tokenization with Transformer Models;2024 International Seminar on Intelligent Technology and Its Applications (ISITIA);2024-07-10

2. Reframing social media discourse: Converting hate speech to non-hate speech;Journal of Intelligent & Fuzzy Systems;2024-04-28

3. Exploring user perspectives;FORUM. Revue internationale d’interprétation et de traduction / International Journal of Interpretation and Translation;2024-04-25

4. Automatic Translation between Mixtec to Spanish Languages Using Neural Networks;Applied Sciences;2024-03-31

5. Research on Tibetan-Chinese Neural Machine Translation Based on GRU;2023 3rd International Conference on Digital Society and Intelligent Systems (DSInS);2023-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3