Automatic Translation between Mixtec to Spanish Languages Using Neural Networks

Author:

Santiago-Benito  Hermilo1ORCID,Córdova-Esparza  Diana-Margarita1ORCID,Castro-Sánchez  Noé-Alejandro2ORCID,García-Ramirez  Teresa1ORCID,Romero-González  Julio-Alejandro1ORCID,Terven  Juan3ORCID

Affiliation:

1. Facultad de Informática, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Queretaro 76230, Mexico

2. Centro Nacional de Investigación y Desarrollo Tecnológico, Tecnológico Nacional de México, Interior Internado Palmira S/N, Palmira, Morelos 62493, Mexico

3. Instituto Politécnico Nacional, CICATA—Unidad Querétaro, Cerro Blanco 141, Col. Colinas del Cimatario, Queretaro 76090, Mexico

Abstract

This paper introduces a novel method for collecting and translating texts from the Mixtec to the Spanish language. The method comprises four primary steps. First, we collected a Mixtec–Spanish corpus that includes 4568 sentences from educational and religious domain texts. To enhance the parallel corpus, we generate synthetic data with GPT-3.5. Second, we cleaned the data with a semi-automatic approach followed by preprocessing and tokenization. In preprocessing, we removed stop words, duplicated sentences, special characters, and numbers and converted them to lowercase. Third, we performed semi-automatic alignment to find the correspondence of Mixtec–Spanish sentences to generate sentence-level aligned texts necessary for translation. Finally, we trained automatic translation models based on recurrent neural networks, bidirectional recurrent neural networks, and Transformers. Our system achieved a BLEU score of 95.66 for Mixtec-to-Spanish translation and 99.87 for Spanish-to-Mixtec translation. We also obtained a translation edit rate (TER) of 0.5 for Spanish-to-Mixtec and a TER of 16.5 for Mixtec-to-Spanish. Our research stands out as a pioneering effort in the field of automatic Mixtec-to-Spanish translation in Mexico, filling a gap identified in the current literature.

Publisher

MDPI AG

Reference44 articles.

1. Oliver, A. (2020, January 3–5). MTUOC: Easy and free integration of NMT systems in professional translation environments. Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, Lisboa, Portugal.

2. Grammatical Inference of Semantic Components in Dialogues;Pinto;Comput. Sist.,2020

3. Inkpen, D., Muresan, S., Lahiri, S., Mazidi, K., and Zhila, A. (June, January 31). Bilingual lexicon extraction for a distant language pair using a small parallel corpus. Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, Denver, CO, USA.

4. POS tagging without a tagger: Using aligned corpora for transferring knowledge to under-resourced languages;Jamoussi;Comput. Y Sist.,2016

5. Calzolari, N., Choukri, K., Declerck, T., Goggi, S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., and Odijk, J. (2016, January 23–28). Axolotl: A Web Accessible Parallel Corpus for Spanish-Nahuatl. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3