An In-Depth Study of Ring Oscillator Reliability under Accelerated Degradation and Annealing to Unveil Integrated Circuit Usage

Author:

Diaz-Fortuny Javier1ORCID,Saraza-Canflanca Pablo1ORCID,Bury Erik1,Degraeve Robin1,Kaczer Ben1

Affiliation:

1. Interuniversity Microelectronics Centre, Kapeldreef 75, 3001 Leuven, Belgium

Abstract

The reliability and durability of integrated circuits (ICs), present in almost every electronic system, from consumer electronics to the automotive or aerospace industries, have been and will continue to be critical concerns for IC chip makers, especially in scaled nanometer technologies. In this context, ICs are expected to deliver optimal performance and reliability throughout their projected lifetime. However, real-time reliability assessment and remaining lifetime projections during in-field IC operation remain unknown due to the absence of trustworthy on-chip reliability monitors. The integration of such on-chip monitors has recently gained significant importance because they can provide real-time IC reliability extraction by exploiting the fundamental physics of two of the major reliability degradation phenomena: bias temperature instability (BTI) and hot carrier degradation (HCD). In this work, we present an extensive study of ring oscillator (RO)-based degradation and annealing monitors designed on our latest 28 nm versatile array chip. This test vehicle, along with a dedicated test setup, enabled the reliable statistical characterization of BTI- and HCD-stressed as well as annealed RO monitor circuits. The versatility of the test vehicle presented in this work permits the execution of accelerated degradation tests together with annealing experiments conducted on RO-based reliability monitor circuits. From these experiments, we have constructed precise annealing maps that provide detailed insights into the annealing behavior of our monitors as a function of temperature and time, ultimately revealing the usage history of the IC.

Funder

CyberSecurity Research Flanders

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3