Comparison of Deep Learning Methods for Detecting and Counting Sorghum Heads in UAV Imagery

Author:

Li HeORCID,Wang Peng,Huang Chong

Abstract

With the rapid development of remote sensing with small, lightweight unmanned aerial vehicles (UAV), efficient and accurate crop spike counting, and yield estimation methods based on deep learning (DL) methods have begun to emerge, greatly reducing labor costs and enabling fast and accurate counting of sorghum spikes. However, there has not been a systematic, comprehensive evaluation of their applicability in cereal crop spike identification in UAV images, especially in sorghum head counting. To this end, this paper conducts a comparative study of the performance of three common DL algorithms, EfficientDet, Single Shot MultiBox Detector (SSD), and You Only Look Once (YOLOv4), for sorghum head detection based on lightweight UAV remote sensing data. The paper explores the effects of overlap ratio, confidence, and intersection over union (IoU) parameters, using the evaluation metrics of precision P, recall R, average precision AP, F1 score, computational efficiency, and the number of detected positive/negative samples (Objects detected consistent/inconsistent with real samples). The experiment results show the following. (1) The detection results of the three methods under dense coverage conditions were better than those under medium and sparse conditions. YOLOv4 had the most accurate detection under different coverage conditions; on the contrary, EfficientDet was the worst. While SSD obtained better detection results under dense conditions, the number of over-detections was larger. (2) It was concluded that although EfficientDet had a good positive sample detection rate, it detected the fewest samples, had the smallest R and F1, and its actual precision was poor, while its training time, although medium, had the lowest detection efficiency, and the detection time per image was 2.82-times that of SSD. SSD had medium values for P, AP, and the number of detected samples, but had the highest training and detection efficiency. YOLOv4 detected the largest number of positive samples, and its values for R, AP, and F1 were the highest among the three methods. Although the training time was the slowest, the detection efficiency was better than EfficientDet. (3) With an increase in the overlap ratios, both positive and negative samples tended to increase, and when the threshold value was 0.3, all three methods had better detection results. With an increase in the confidence value, the number of positive and negative samples significantly decreased, and when the threshold value was 0.3, it balanced the numbers for sample detection and detection accuracy. An increase in IoU was accompanied by a gradual decrease in the number of positive samples and a gradual increase in the number of negative samples. When the threshold value was 0.3, better detection was achieved. The research findings can provide a methodological basis for accurately detecting and counting sorghum heads using UAV.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3