Wheat ear counting using K-means clustering segmentation and convolutional neural network

Author:

Xu Xin,Li Haiyang,Yin Fei,Xi Lei,Qiao Hongbo,Ma Zhaowu,Shen Shuaijie,Jiang Binchao,Ma XinmingORCID

Abstract

Abstract Background Wheat yield is influenced by the number of ears per unit area, and manual counting has traditionally been used to estimate wheat yield. To realize rapid and accurate wheat ear counting, K-means clustering was used for the automatic segmentation of wheat ear images captured by hand-held devices. The segmented data set was constructed by creating four categories of image labels: non-wheat ear, one wheat ear, two wheat ears, and three wheat ears, which was then was sent into the convolution neural network (CNN) model for training and testing to reduce the complexity of the model. Results The recognition accuracy of non-wheat, one wheat, two wheat ears, and three wheat ears were 99.8, 97.5, 98.07, and 98.5%, respectively. The model R2 reached 0.96, the root mean square error (RMSE) was 10.84 ears, the macro F1-score and micro F1-score both achieved 98.47%, and the best performance was observed during late grain-filling stage (R2 = 0.99, RMSE = 3.24 ears). The model could also be applied to the UAV platform (R2 = 0.97, RMSE = 9.47 ears). Conclusions The classification of segmented images as opposed to target recognition not only reduces the workload of manual annotation but also improves significantly the efficiency and accuracy of wheat ear counting, thus meeting the requirements of wheat yield estimation in the field environment.

Funder

Outstanding Science and Technology Innovation Talents Program of Henan province

Modern agricultural technology system project of Henan Province

the 13th five-year national key research and development plan of China

National Basic Research Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3