Abstract
Abstract
Background
Wheat yield is influenced by the number of ears per unit area, and manual counting has traditionally been used to estimate wheat yield. To realize rapid and accurate wheat ear counting, K-means clustering was used for the automatic segmentation of wheat ear images captured by hand-held devices. The segmented data set was constructed by creating four categories of image labels: non-wheat ear, one wheat ear, two wheat ears, and three wheat ears, which was then was sent into the convolution neural network (CNN) model for training and testing to reduce the complexity of the model.
Results
The recognition accuracy of non-wheat, one wheat, two wheat ears, and three wheat ears were 99.8, 97.5, 98.07, and 98.5%, respectively. The model R2 reached 0.96, the root mean square error (RMSE) was 10.84 ears, the macro F1-score and micro F1-score both achieved 98.47%, and the best performance was observed during late grain-filling stage (R2 = 0.99, RMSE = 3.24 ears). The model could also be applied to the UAV platform (R2 = 0.97, RMSE = 9.47 ears).
Conclusions
The classification of segmented images as opposed to target recognition not only reduces the workload of manual annotation but also improves significantly the efficiency and accuracy of wheat ear counting, thus meeting the requirements of wheat yield estimation in the field environment.
Funder
Outstanding Science and Technology Innovation Talents Program of Henan province
Modern agricultural technology system project of Henan Province
the 13th five-year national key research and development plan of China
National Basic Research Program of China
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献