Fast and Precise Detection of Dense Soybean Seedlings Images Based on Airborne Edge Device

Author:

Yang Zishang1,Liu Jiawei1,Wang Lele1,Shi Yunhui1,Cui Gongpei1,Ding Li1,Li He1

Affiliation:

1. College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China

Abstract

During the growth stage of soybean seedlings, it is crucial to quickly and precisely identify them for emergence rate assessment and field management. Traditional manual counting methods have some limitations in scenarios with large-scale and high-efficiency requirements, such as being time-consuming, labor-intensive, and prone to human error (such as subjective judgment and visual fatigue). To address these issues, this study proposes a rapid detection method suitable for airborne edge devices and large-scale dense soybean seedling field images. For the dense small target images captured by the Unmanned Aerial Vehicle (UAV), the YOLOv5s model is used as the improvement benchmark in the technical solution. GhostNetV2 is selected as the backbone feature extraction network. In the feature fusion stage, an attention mechanism—Efficient Channel Attention (ECA)—and a Bidirectional Feature Pyramid Network (BiFPN) have been introduced to ensure the model prioritizes the regions of interest. Addressing the challenge of small-scale soybean seedlings in UAV images, the model’s input size is set to 1280 × 1280 pixels. Simultaneously, Performance-aware Approximation of Global Channel Pruning for Multitask CNNs (PAGCP) pruning technology is employed to meet the requirements of mobile or embedded devices. The experimental results show that the identification accuracy of the improved YOLOv5s model reached 92.1%. Compared with the baseline model, its model size and total parameters were reduced by 76.65% and 79.55%, respectively. Beyond these quantitative evaluations, this study also conducted field experiments to verify the detection performance of the improved model in various scenarios. By introducing innovative model structures and technologies, the study aims to effectively detect dense small target features in UAV images and provide a feasible solution for assessing the number of soybean seedlings. In the future, this detection method can also be extended to similar crops.

Funder

China Agriculture Research System of MOF and MARA

Science and Technology R&D Plan Joint Fund of Henan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3