Generalized Labeled Multi-Bernoulli Multi-Target Tracking with Doppler-Only Measurements

Author:

Zhu Yun,Mallick MahendraORCID,Liang Shuang,Yan Junkun

Abstract

The paper addresses the problem of tracking multiple targets with Doppler-only measurements in multi-sensor systems. It is well known that the observability of the target state measured using Doppler-only measurements is very poor, which makes it difficult to initialize the tracking target and produce the target trajectory in any tracking algorithm. Within the framework of random finite sets, we propose a novel constrained admissible region (CAR) based birth model that instantiates the birth distribution using Doppler-only measurements. By combining physics-based constraints in the unobservable subspace of the state space, the CAR based birth model can effectively reduce the ambiguity of the initial state. The CAR based birth model combines physics-based constraints in the unobservable subspace of the state space to reduce the ambiguity of the initial state. We implement the CAR based birth model with the generalized labeled multi-Bernoulli tracking filter to demonstrate the effectiveness of our proposed algorithm in Doppler-only tracking. The performance of the proposed approach is tested in two simulation scenarios in terms of the optimal subpattern assignment (OSPA) error, OSPA(2) (2)error, and computing efficiency. The simulation results demonstrate the superiority of the proposed approach. Compared to the approach taken by the state-of-the-art methods, the proposed approach can at most reduce the OSPA error by 58.77%, reduce the OSPA(2) error by 43.51%, and increase the computing efficiency by 9.56 times in the first scenario. In the second scenario, the OSPA error is reduced by 62.80%, the OSPA(2) (2)error is reduced by 43.65%, and the computing efficiency is increased by 2.61 times at most.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3