Abstract
AbstractThis paper proposes a novel joint decision and estimation (JDE) solution for the multi-target detection and tracking (MDT) problem. MDT aims to jointly detect the number of targets and estimate their states, which is essentially a JDE problem since detection and tracking are highly coupled. Thus, a joint solution which can utilize the coupling is preferable. However, the existing JDE approach has either poor performance or excessive design parameters without considering the MDT problem realities, i.e., the losses that different decisions may lead to. Therefore, we propose a compact conditional JDE (CCJDE)-based MDT method with less design parameters but superior performance. Specifically, we propose a CCJDE-based MDT risk which unifies the detection and tracking risks in a compact way. Then, we derive the joint detection and tracking solution accounting for their couplings, where the joint probabilistic data association filter is adopted due to its advantageous performance and the adaptability to the JDE framework. Then, an efficient CCJDE-MDT algorithm is developed. Besides, some parameter designing guidelines are presented by considering the MDT realities. Simulation results verify the effectiveness of the proposed CCJDE-MDT method, which outperforms the traditional decision-then-estimation in joint performance and also beats the existing recursive joint decision and estimation(RJDE) method in many cases.
Funder
Natural Science Foundation of Shaanxi Province
Fundamental Research Funds for the Central Universities, CHD
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献