Vessel Tracking Using Bistatic Compact HFSWR

Author:

Sun WeifengORCID,Ji Mengjie,Huang WeiminORCID,Ji YonggangORCID,Dai Yongshou

Abstract

Bistatic and multi-static high-frequency surface wave radar (HFSWR) is becoming a prospective development trend for sea surface surveillance due to its potential in extending the coverage area, improving the detection accuracy, etc. In this paper, the vessel detection and tracking performance of a newly developed bistatic compact HFSWR system whose transmitting and receiving antennas are not co-located was investigated. Firstly, the representation of the target range and Doppler velocity concerning a bistatic HFSWR was derived and compared with that of a monostatic system. Next, taking the characteristics of target kinematic parameters into account, a target tracking method applicable to a bistatic HFSWR is proposed. The simultaneous target tracking results from both monostatic and bistatic HFSWR field data are presented and compared. The experimental results demonstrate the good performance in target tracking of the bistatic HFSWR and also show that an HFSWR system combining monostatic and bistatic modes has the potential to enhance the target track continuity and improve the detection accuracy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3