Target Detection Method for High-Frequency Surface Wave Radar RD Spectrum Based on (VI)CFAR-CNN and Dual-Detection Maps Fusion Compensation

Author:

Ji Yuanzheng1ORCID,Liu Aijun1,Chen Xuekun1ORCID,Wang Jiaqi1,Yu Changjun1ORCID

Affiliation:

1. School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China

Abstract

This paper proposes a method for the intelligent detection of high-frequency surface wave radar (HFSWR) targets. This method cascades the adaptive constant false alarm (CFAR) detector variability index (VI) with the convolutional neural network (CNN) to form a cascade detector (VI)CFAR-CNN. First, the (VI)CFAR algorithm is used for the first-level detection of the range–Doppler (RD) spectrum; based on this result, the two-dimensional window slice data are extracted using the window with the position of the target on the RD spectrum as the center, and input into the CNN model to carry out further target and clutter identification. When the detection rate of the detector reaches a certain level and cannot be further improved due to the convergence of the CNN model, this paper uses a dual-detection maps fusion method to compensate for the loss of detection performance. First, the optimized parameters are used to perform the weighted fusion of the dual-detection maps, and then, the connected components in the fused detection map are further processed to achieve an independent (VI)CFAR to compensate for the (VI)CFAR-CNN detection results. Due to the difficulty in obtaining HFSWR data that include comprehensive and accurate target truth values, this paper adopts a method of embedding targets into the measured background to construct the RD spectrum dataset for HFSWR. At the same time, the proposed method is compared with various other methods to demonstrate its superiority. Additionally, a small amount of automatic identification system (AIS) and radar correlation data are used to verify the effectiveness and feasibility of this method on completely measured HFSWR data.

Funder

National Natural Science Foundation of China

Mount Taishan Scholar Distinguished Expert Plan

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3