Mechanical Behavior of GFRP Laminates Exposed to Thermal and Moist Environmental Conditions: Experimental and Model Assessment

Author:

Tefera Getahun,Adali Sarp,Bright Glen

Abstract

This paper presents an experimental and analytical study about the mechanical response at a different temperature on glass fiber-reinforced polymer laminates. The effect of different environmental conditions on compressive, tensile, stiffness, and viscoelastic behavior (storage modulus, loss modulus and damping ratio) of laminates were investigated. Before testing, laminates were preserved in a deep freezer at −80 °C, −20 °C, 0 °C, and room temperature (25 °C) for up to 60 days. Results confirmed that temperatures ranging from −80 to 50 °C, which were below the glass transition temperature of the epoxy resin, did not significantly affect the compressive, tensile, and stiffness performance of all laminates. When the testing temperature increased to 100 °C, the properties were decreased significantly due to the damaging of the fiber/matrix interface. Additionally, results obtained from dynamic mechanical analyses tests showed a drop-in storage modulus, high peaks in loss modulus and high damping factor at the glass transition region of the epoxy resin. The highest storage modulus, two phases of glassy states and highest damping ratio on the −80/G group of laminates were obtained. The accuracy of experimental results was assessed with empirical models on the storage modulus behavior of laminates. The empirical model developed by Gibson et al. provided accurate estimates of the storage modulus as a function of temperature and frequency. The remaining empirical models were less accurate and non-conservative estimations of laminates stiffness.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3