Influence of Long-Term Moisture Exposure and Temperature on the Mechanical Properties of Hybrid FRP Composite Specimens

Author:

Tefera Getahun1,Bright Glen1,Adali Sarp1

Affiliation:

1. Discipline of Mechanical Engineering, University of KwaZulu-Natal, Durban 4041, South Africa

Abstract

The present experimental study assesses the mechanical properties of glass/carbon/glass hybrid composite laminates after being exposed to moisture in a deep freezer and elevated temperatures for extended periods. The top and bottom layers of the hybrid laminates are reinforced with glass fibre, and the middle layer is reinforced with carbon fibre using the epoxy matrix as a binder polymer material. The hybrid laminates were manufactured using the resin transfer moulding method, and their compressive and tensile properties were determined using a tensile testing machine. The storage modulus, loss modulus, and damping factors of all groups of laminates were identified using a dynamic mechanical analysis as a function of temperature and vibration frequency. The experimental results on compressive and tensile properties revealed slight variations when the hybrid laminates were kept at low temperatures in a deep freezer for extended periods. This might occur due to the increasing molecular crosslinking of the polymer network. As the testing temperature increased, compressive, tensile, storage modules, loss modulus, and damping factors decreased. This might occur due to the increasing mobility of the binder material. Particularly, the highest stiffness parameters were obtained at −80 °C/GCG (glass/carbon/glass) laminates due to the presence of a beta transition in the glassy region. The relationships between the glass transitions and the targeted frequencies were characterized. The values of the glass transition shift towards higher temperatures as the frequency increases. This might occur due to a reduction in the gaps between the crosslinking of the epoxy network when the frequency increases. The accuracy of the storage modulus results was compared with the empirical models. The model based on the Arrhenius law provided the closest correlation. Meanwhile, another model was observed that was not accurate enough to predict when gamma and beta relaxations occur in a glassy state.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3