Effect of Thermomechanical Loading at Low Temperatures on Damage Development in Glass Fiber Epoxy Laminates

Author:

Krzak Anna1ORCID,Al-Maqdasi Zainab2ORCID,Nowak Agnieszka J.1ORCID,Joffe Roberts2

Affiliation:

1. Scientific and Didactic Laboratory of Nanotechnology and Material Technologies, Silesian University of Technology, 44-100 Gliwice, Poland

2. Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden

Abstract

Due to the high interest in the use of glass/epoxy laminates in aerospace applications, aviation, and as cryogenic tanks, it is crucial to understand the behavior of composites under challenging environmental conditions. Polymer composites are exposed to low temperatures, including cryogenic temperatures, which can lead to the initiation of microdamage. This paper investigates damage initiation/accumulation and its influence on the properties of cross-ply woven glass fiber epoxy composites at low temperatures compared to room temperature conditions. To evaluate the influence of a low-temperature environment on the mechanical performance of glass fiber reinforced epoxy composite (GFRP) laminates, three types of test campaigns were carried out: quasi-static tensile tests and stepwise increasing loading/unloading cyclic tensile tests at room temperature and in a low-temperature environment (−50 °C). We demonstrated that the initial stiffness of the laminates increased at low temperatures. On the other hand, there were no observed changes in the type or mechanism of developed damage in the two test conditions. However, the reduction in stiffness due to the accumulated damage was more significant for the laminates tested at low temperatures (~17% vs. ~11%). Exceptions were noted in a few formulations where the extent of damage at low temperatures was insignificant (<1%) compared to that at room temperature. Since some of the studied laminates exhibited a relatively minor decrease in stiffness (~2–3%), we can also conclude that the formulation of matrix material plays an important role in delaying the initiation and formation of damage.

Funder

Polish Ministry of Education and Science

Erasmus+ programme of the European Union

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3