An Eco-Friendly Polymer Composite Fertilizer for Soil Fixation, Slope Stability, and Erosion Control

Author:

Li TaoORCID,Dai Fengli,He Yufeng,Xu Daqian,Wang Rongmin

Abstract

In the Loess Plateau region, the poor structure and properties of loess slopes will cause many types of geological disasters such as landslides, mudflow, land collapse, soil erosion, and ground cracking. In this paper, an eco-friendly polymer composite fertilizer (PCF) based on corn straw wastes (CS) and geopolymer synthesized from loess was studied. The characterization by FT-IR of the PCF confirmed that graft copolymer is formed, while morphological analysis by scanning electron microscopy and energy dispersive spectroscopy showed that geopolymer and urea were embedded in the polymer porous network. The effects of PCF contents on the compressive strength of loess were investigated. The PCF was characterized in terms of surface curing test, temperature and freeze-thaw aging property, water and wind erosion resistance, and remediation soil acidity and alkalinity property, which indicates that PCF can improve loess slope fixation and stability by physical and chemical effects. Moreover, the loess slope planting experiment showed that PCF can significantly increase the germination rate of vegetation from 31% to 68% and promote the survival rate of slope vegetation from 45.2% to 67.7% to enhance biological protection for loess slopes. The PCF meets the demands of building and roadbed slope protection and water-soil conservation in arid and semi-arid regions, which opens a new application field for multifunctional polymer composite fertilizers with low cost and environmental remediation.

Funder

2021 Long yuan Youth Innovation and Entrepreneurship Talent Project

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3