Mixtures of Cationic Linear Polymer and Anionic Polymeric Microspheres for Stabilization of Sand: Physicochemical, Structural and Mechanical Study

Author:

Panova Irina1,Shevaleva Evgeniya2,Gritskova Inessa2,Arzhakov Maxim1,Yaroslavov Alexander1

Affiliation:

1. Faculty of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia

2. Department of Chemistry and Technology of Macromolecular Compounds, MIREA—Russian Technological University, 119571 Moscow, Russia

Abstract

Aqueous formulations based on anionic butadiene-styrene microspheres (BSMs) and cationic poly(diallyldimethylammonium chloride) (PDADMAC) with the weight PDADMAC fraction from 0 to 1 were studied as the stabilizers of loose sandy soils. In general, these systems were shown to be represented as the mixtures of microspheres saturated with PDADMAC and unbound polycation. Mechanical testing of BSMs–PDADMAC films evidenced that with increasing weight PDADMAC fraction, a 20-fold growth in elastic modulus, 2-fold growth in strength and 2-fold decrease in ultimate strain of the material were observed. Treatment of the sand with the above formulations resulted in formation of a protective porous polymer-sand surface crust with the strength from 0.8 to 45.0 MPa. “Elasticity–rigidity” balance and water resistance of the crusts were controlled by weight fraction of polycation in the mixed formulation. Stable water-resistant polymer-sand crusts were shown to be prepared using formulations with the weight PDADMAC fraction from 0 to 0.2. The results indicated a great potential of the polymer-colloid formulations for the fabrication of structured sand coatings with controlled properties.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3