IORand: A Procedural Videogame Level Generator Based on a Hybrid PCG Algorithm

Author:

Moreno-Armendáriz Marco A.ORCID,Calvo HiramORCID,Torres-León José A.ORCID,Duchanoy Carlos A.ORCID

Abstract

In this work we present the intelligent orchestrator of random generators (IORand), a hybrid procedural content generation (PCG) algorithm, driven by game experience, based on reinforcement learning and semi-random content generation methods. Our study includes a presentation of current PCG techniques and why a hybridization of approaches has become a new trend with promising results in the area. Moreover, the design of a new method for evaluating video game levels is presented, aimed at evaluating game experiences, based on graphs, which allows identifying the type of interaction that the player will have with the level. Then, the design of our hybrid PCG algorithm, IORand, whose reward function is based on the proposed level evaluation method, is presented. Finally, a study was conducted on the performance of our algorithm to generate levels of three different game experiences, from which we demonstrate the ability of IORand to satisfactorily and consistently solve the generation of levels that provide specific game experiences.

Funder

Instituto Politécnico Nacional

Consejo Nacional de Ciencia y Tecnología

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference54 articles.

1. What is procedural content generation;Togelius;Mario Borderline. Pcgames,2010

2. Procedural Puzzle Generation: A Survey

3. Increasing generality in machine learning through procedural content generation

4. Procedural Content Generation in Games;Shaker,2016

5. Procedural Content Generation via Machine Learning (PCGML)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GFGDA: general framework for generating dungeons with atmosphere;Multimedia Tools and Applications;2024-03-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3