Abstract
Forest fires cause damage to property and the environment around the world every year. North Korea has suffered from fires every year. Fires may lead to temporary or permanent damage to forest ecosystems, long-term site degradation, and alteration of hydrological regimes, producing detrimental impacts on economies, human health, and safety. In North Korea, fires cause serious damage to the affected mountainous environment. However, it is very difficult to obtain ground information or perform field checks because of the political isolation of North Korea. Thus, there are few studies that have investigated North Korean fires. In this situation, remote sensing techniques and digital topographic data can be used to investigate fire characteristics in North Korea. In this study, fire trends were analyzed using Moderate Resolution Imaging Spectroradiometer (MODIS) data from the Land Processes Distributed Active Archive Center (LPDAAC) from 2004 to 2015, and Landsat data were processed to estimate burned areas in South Hamgyong Province (SHP) and Gangwon Province (GWP) in North Korea. The burn severity of large fires in elevation, slope, and landform features was also analyzed to investigate large fire-burned areas using 30-m-resolution Global Digital Elevation Model (DEM) data from the United States National Aeronautics and Space Administration (NASA). After the results were compared and discussed, the following conclusions were derived. (1) In terms of location, fires in SHP were relatively concentrated along BaekDu-DaeGan (BDDG), while fires in GWP were scattered throughout the province. (2) In terms of size, the large fire-burned areas with an area greater than 1000 ha are significantly more frequent in SHP than in GWP. In brief, large fires occurred more frequently and were more serious in SHP than in GWP. (3) In terms of forest type, coniferous areas were more susceptible to damage from fires and large fires than deciduous areas in both GWP and SHP. This is attributed to the combustible resin within the coniferous trees. Particularly, when a crown fire occurs, it tends to spread rapidly throughout the coniferous forest. (4) Regarding landforms, most large fires occurred along windward-side open slopes, while there were very few fires in shallow valleys, high ridges, or U-shaped valleys. It is believed that cultivation in high-elevation terrain and a lack of fire-extinguishing equipment and systems allow large fires to spread quickly. North Korea is very susceptible to large fire damage and must develop preparation measures against such situations.
Funder
Basic Research Project of the National Research Foundation of Korea
Samsung Academic Research
National Nature Science Foundation of China
Jilin Provincial Science and Technology Department Project
Subject
General Earth and Planetary Sciences
Reference42 articles.
1. Spatial and temporal distribution patterns of wildfires in China based on MODIS data;Chin. J. Ecol.,2014
2. Song, L.C. (2015). The Evolution of Soil Habitat Quality after Severe Fire Disturbance in the Greater Xing’an Mountains. [Ph.D. Thesis, Northeast Forestry University].
3. Understanding fire drivers and relative impacts in different Chinese forest ecosystems;Sci. Total Environ.,2017
4. Measurements of excess O3, CO2, CO, CH4, C2H4, C2H2, HCN, NO, NH3, HCOOH, CH3COOH, HCHO, and CH3OH in 1997 Alaskan biomass burning plumes by airborne Fourier transform infrared spectroscopy (AFTIR);J. Geophys. Res. Atmos.,2000
5. Opportunities and challenges for the protection and ecological functions promotion of natural forests in China;For. Ecol. Manag.,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献