Akdeniz bölgesi’ndeki orman yangınlarının uzaktan algılama ve coğrafi bilgi sistemleri kullanılarak değerlendirilmesi: Mersin ili Silifke ilçesi örneği
Author:
ÇELİK Mehmet Özgür1ORCID, FİDAN Doğa1ORCID, ULVİ Ali1ORCID, YAKAR Murat1ORCID
Abstract
Orman yangınları çevreyi ve canlıları olumsuz etkileyen olaylardır. Bu yangınların önlenmesi ile yangın sonrası ağaçlandırma ve koruma stratejilerinin geliştirilmesi için, hasarın boyutunun belirlenmesi ve yanma şiddetinin hızlı bir şekilde araştırılması gereklidir. Uzaktan algılama (UA) yangından etkilenen bölgelerin ve yanma şiddetinin haritalanmasında Coğrafi Bilgi Sistemleri (CBS) ile birlikte sıklıkla kullanılmaktadır. Bu çalışmada, 2021 yılında Mersin ili Silifke içesinde meydana gelen orman yangını incelenmiştir. Sahanın yangın öncesi ve sonrasına ait Sentinel-2A ve Landsat 8 OLI uydu görüntüleri yardımıyla NDVI (Normalize Fark Vejetasyon İndeksi) ve NBR (Normalize Yanma Şiddeti) indeksleri hesaplanmıştır. Elde edilen indeks haritalarından fark haritaları oluşturulmuş, yangın sonrasındaki arazi örtüsündeki değişim ve yanma şiddeti belirlenmiştir. Buna göre toplam yanan alanlar 2324,71 hektardır. Yangına “yüksek” derecede maruz kalan alanlar çalışma alanın %27,72’sini (644,44 ha), “orta” derecede yanan alanlar %66,72’sini (1538,16 ha) ve “düşük” seviyede yanan alanlar ise %6,11’ini (142,11 ha) oluşturmaktadır. Ayrıca, EFFIS veri tabanından elde edilen çalışma alanına ait yangın verisiyle de yapılan analizin doğrulaması gerçekleştirilmiştir. Bu işlem için alıcı işletim karakteristik (receiver operating characteristic – ROC) eğrisi kullanılmış ve eğri altındaki alan (area under the curve - AUC) değeri 0,973 olarak hesaplanmıştır. Çıkan sonuçlar, Orman Genel Müdürlüğü (OGM) yetkililerine ve diğer karar vericilere sürdürülebilir arazi yönetimi uygulamaları konusunda yardımcı olmayı amaçlamaktadır.
Publisher
Cankiri Karatekin Universitesi
Subject
General Agricultural and Biological Sciences
Reference84 articles.
1. Amjad, D., Kausar, S., Waqar, R., Sarwar, F., 2019. Land cover change analysis and impacts of deforestation on the climate of district Mansehra, Pakistan. Journal of Biodiversity and Environmental Sciences 14(6), 103-113. 2. Arca, D., Hacısalihoğlu, M., Kutoğlu, Ş. H., 2020. Producing forest fire susceptibility map via multi-criteria decision analysis and frequency ratio methods. Natural Hazards 104, 73-89. 3. Arisanty, D., Adyatma, S., Muhaimin, M., Nursaputra, A., 2019. Landsat 8 OLI TIRS Imagery Ability for Monitoring Post Forest Fire Changes. Pertanika Journal of Science & Technology, 27(3), 1105-1120. 4. Arunachalam, M., Joshua, R. M., Kochuparampil, A. J., Saravanavel, J., 2023. ArcOLITIRS: A toolbox for radiometric calibration and surface temperature estimation from Landsat 8 products in ArcGIS environment. Journal of the Indian Society of Remote Sensing, 51(3), 453-468. 5. Bekçi, R. N., Kuşak, L., 2022. Mekânsal çözünürlüğün güneşlenme potansiyeline etkisi. Türkiye İnsansız Hava Araçları Dergisi 4(1), 46-51.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|