Wildfire Susceptibility Mapping Using Deep Learning Algorithms in Two Satellite Imagery Dataset

Author:

Bahadori Nazanin1,Razavi-Termeh Seyed Vahid2ORCID,Sadeghi-Niaraki Abolghasem2,Al-Kindi Khalifa M.3ORCID,Abuhmed Tamer4ORCID,Nazeri Behrokh5,Choi Soo-Mi2ORCID

Affiliation:

1. Geoinformation Technology Center of Excellence, Faculty of Geodesy & Geomatics Engineering, K.N. Toosi University of Technology, Tehran 163171419, Iran

2. Department of Computer Science & Engineering and Convergence Engineering for Intelligent Drone, XR Research Center, Sejong University, Seoul 05006, Republic of Korea

3. UNESCO Aflaj Studies, Archaeohydrology, University of Nizwa, Nizwa 616, Oman

4. College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Republic of Korea

5. Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA

Abstract

Recurring wildfires pose a critical global issue as they undermine social and economic stability and jeopardize human lives. To effectively manage disasters and bolster community resilience, the development of wildfire susceptibility maps (WFSMs) has emerged as a crucial undertaking in recent years. In this research endeavor, two deep learning algorithms were leveraged to generate WFSMs using two distinct remote sensing datasets. Specifically, the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Landsat-8 images were utilized to monitor wildfires that transpired during the year 2021. To develop an effective WFSM, two datasets were created by incorporating 599 wildfire locations with Landsat-8 images and 232 sites with MODIS images, as well as twelve factors influencing wildfires. Deep learning algorithms, namely the long short-term memory (LSTM) and recurrent neural network (RNN), were utilized to model wildfire susceptibility using the two datasets. Subsequently, four WFSMs were generated using the LSTM (MODIS), LSTM (Landsat-8), RNN (MODIS), and RNN (Landsat-8) algorithms. The evaluation of the WFSMs was performed using the area under the receiver operating characteristic (ROC) curve (AUC) index. The results revealed that the RNN (MODIS) (AUC = 0.971), RNN (Landsat-8) (AUC = 0.966), LSTM (MODIS) (AUC = 0.964), and LSTM (Landsat-8) (AUC = 0.941) algorithms demonstrated the highest modeling accuracy, respectively. Moreover, the Gini index was employed to assess the impact of the twelve factors on wildfires in the study area. The results of the random forest (RF) algorithm indicated that temperature, wind speed, slope, and topographic wetness index (TWI) parameters had a significant effect on wildfires in the study region. These findings are instrumental in facilitating efficient wildfire management and enhancing community resilience against the detrimental effects of wildfires.

Publisher

MDPI AG

Subject

Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3