Quantitative Lasting Effects of Drought Stress at a Growth Stage on Soybean Evapotranspiration and Aboveground BIOMASS

Author:

Cui Yi,Ning Shaowei,Jin Juliang,Jiang ShangmingORCID,Zhou YuliangORCID,Wu Chengguo

Abstract

Quantifying the lasting effects of drought stress on crop growth is a theoretical basis for revealing agricultural drought risk mechanism and formulating adaptive irrigation strategies. Based on two-season pot experiments of soybean in the Huaibei Plain, quantitative responses of plant evapotranspiration and aboveground biomass at each growth stage from a drought were carried out. The results showed that drought stress at a certain stage of soybean not only significantly reduced the current evapotranspiration and aboveground biomass accumulation during this stage, compared with full irrigation, but also generated the after-effects, which resulted in the reductions of evapotranspiration and biomass accumulation at the subsequent periods. Furthermore, the damaged transpiration and growth mechanism caused by drought gradually recovered through the rewatering later, and the compensation phenomenon even occurred. Nevertheless, the specific recovery effect was decided by both the degree and period of drought before. It is practical to implement deficit irrigation at the seedling and branching stages, but the degree should be controlled. Meanwhile, it is crucial to ensure sufficient water supply during the reproductive growth phase, especially at the flowering and pod-enlargement stage, to guarantee a normal transpiration function and a high biomass yield for soybeans in the Huaibei Plain.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3