An Entropy-Weighting Method for Efficient Power-Line Feature Evaluation and Extraction from LiDAR Point Clouds

Author:

Tan JunxiangORCID,Zhao HaojieORCID,Yang Ronghao,Liu Hua,Li Shaoda,Liu Jianfei

Abstract

Power-line inspection is an important means to maintain the safety of power networks. Light detection and ranging (LiDAR) technology can provide high-precision 3D information about power corridors for automated power-line inspection, so there are more and more utility companies relying on LiDAR systems instead of traditional manual operation. However, it is still a challenge to automatically detect power lines with high precision. To achieve efficient and accurate power-line extraction, this paper proposes an algorithm using entropy-weighting feature evaluation (EWFE), which is different from the existing hierarchical-multiple-rule evaluation of many geometric features. Six significant features are selected (Height above Ground Surface (HGS), Vertical Range Ratio (VRR), Horizontal Angle (HA), Surface Variation (SV), Linearity (LI) and Curvature Change (CC)), and then the features are combined to construct a vector for quantitative evaluation. The feature weights are determined by an entropy-weighting method (EWM) to achieve optimal distribution. The point clouds are filtered out by the HGS feature, which possesses the highest entropy value, and a portion of non-power-line points can be removed without loss of power-line points. The power lines are extracted by evaluation of the other five features. To decrease the interference from pylon points, this paper analyzes performance in different pylon situations and performs an adaptive weight transformation. We evaluate the EWFE method using four datasets with different transmission voltage scales captured by a light unmanned aerial vehicle (UAV) LiDAR system and a mobile LiDAR system. Experimental results show that our method demonstrates efficient performance, while algorithm parameters remain consistent for the four datasets. The precision F value ranges from 98.4% to 99.7%, and the efficiency ranges from 0.9 million points/s to 5.2 million points/s.

Funder

Science and Technology Plan Project of Sichuan Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3