Controllability of Brain Neural Networks in Learning Disorders—A Geometric Approach

Author:

García-Planas Maria IsabelORCID,García-Camba Maria Victoria

Abstract

The human brain can be interpreted mathematically as a linear dynamical system that shifts through various cognitive regions promoting more or less complicated behaviors. The dynamics of brain neural network play a considerable role in cognitive function and therefore of interest in the bid to understand the learning processes and the evolution of possible disorders. The mathematical theory of systems and control makes available procedures, concepts, and criteria that can be applied to ease the perception of the dynamic processes that administer the evolution of the brain with learning and its control with treatment in case of disorder. In this work, a geometric study through the conception of exact controllability is comprehended to detect the minimum set and the location of the driving nodes of learning. We will describe the different roles of the nodes in the control of the paths of brain networks and show the transition of some driving nodes and the preservation of the rest in the course of learning in patients with some learning disability.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference14 articles.

1. Advances in Network Controllability

2. Deep Neural Networks: A New Framework for Modeling Biological Vision and Brain Information Processing

3. Consensus of multiagent systems and synchronization of complex networks: A unified viewpoint;Li;IEEE Trans. Circuits Syst. I Regul. Pap.,2009

4. Consensus in multi-agent systems;Proskurnikov,2016

5. Neural networks and dynamical systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Controllability of Leader-following Multi-agent Systems;WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL;2023-10-27

2. Perturbation of Multiagent Linear Systems;WSEAS TRANSACTIONS ON SYSTEMS;2023-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3