Domain Adaptation for Semantic Segmentation of Historical Panchromatic Orthomosaics in Central Africa

Author:

Mboga Nicholus,D’Aronco Stefano,Grippa TaisORCID,Pelletier CharlotteORCID,Georganos Stefanos,Vanhuysse SabineORCID,Wolff Eléonore,Smets BenoîtORCID,Dewitte OlivierORCID,Lennert MoritzORCID,Wegner Jan Dirk

Abstract

Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.

Funder

Belgian Federal Science Policy Office

Fond nationale de la recherche scientifique –

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development

Reference42 articles.

1. An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification

2. Modelling and mapping the intra-urban spatial distribution of Plasmodium falciparum parasite rate using very-high-resolution satellite derived indicators

3. Digital Reproduction of Historical Aerial Photographic Prints for Preserving a Deteriorating Archive;Luman;Am. Soc. Photogramm. Remote Sens.,1997

4. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420),2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3