Monitoring of Antarctica’s Fragile Vegetation Using Drone-Based Remote Sensing, Multispectral Imagery and AI

Author:

Raniga Damini12,Amarasingam Narmilan12ORCID,Sandino Juan12ORCID,Doshi Ashray34,Barthelemy Johan35,Randall Krystal34,Robinson Sharon A.34ORCID,Gonzalez Felipe12ORCID,Bollard Barbara34ORCID

Affiliation:

1. School of Electrical Engineering and Robotics, Faculty of Engineering, Queensland University of Technology, Brisbane City, QLD 4000, Australia

2. Securing Antarctica’s Environmental Future (SAEF), Queensland University of Technology, Brisbane City, QLD 4000, Australia

3. Securing Antarctica’s Environmental Future (SAEF), University of Wollongong, Wollongong, NSW 2522, Australia

4. School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia

5. NVIDIA, Santa Clara, CA 95051, USA

Abstract

Vegetation in East Antarctica, such as moss and lichen, vulnerable to the effects of climate change and ozone depletion, requires robust non-invasive methods to monitor its health condition. Despite the increasing use of unmanned aerial vehicles (UAVs) to acquire high-resolution data for vegetation analysis in Antarctic regions through artificial intelligence (AI) techniques, the use of multispectral imagery and deep learning (DL) is quite limited. This study addresses this gap with two pivotal contributions: (1) it underscores the potential of deep learning (DL) in a field with notably limited implementations for these datasets; and (2) it introduces an innovative workflow that compares the performance between two supervised machine learning (ML) classifiers: Extreme Gradient Boosting (XGBoost) and U-Net. The proposed workflow is validated by detecting and mapping moss and lichen using data collected in the highly biodiverse Antarctic Specially Protected Area (ASPA) 135, situated near Casey Station, between January and February 2023. The implemented ML models were trained against five classes: Healthy Moss, Stressed Moss, Moribund Moss, Lichen, and Non-vegetated. In the development of the U-Net model, two methods were applied: Method (1) which utilised the original labelled data as those used for XGBoost; and Method (2) which incorporated XGBoost predictions as additional input to that version of U-Net. Results indicate that XGBoost demonstrated robust performance, exceeding 85% in key metrics such as precision, recall, and F1-score. The workflow suggested enhanced accuracy in the classification outputs for U-Net, as Method 2 demonstrated a substantial increase in precision, recall and F1-score compared to Method 1, with notable improvements such as precision for Healthy Moss (Method 2: 94% vs. Method 1: 74%) and recall for Stressed Moss (Method 2: 86% vs. Method 1: 69%). These findings contribute to advancing non-invasive monitoring techniques for the delicate Antarctic ecosystems, showcasing the potential of UAVs, high-resolution multispectral imagery, and ML models in remote sensing applications.

Funder

Australian Research Council (ARC) SRIEAS

Australian Antarctic Division

NVIDIA academic

Publisher

MDPI AG

Reference66 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3