Basking in the sun: how mosses photosynthesise and survive in Antarctica

Author:

Yin HaoORCID,Perera-Castro Alicia V.ORCID,Randall Krystal L.ORCID,Turnbull Johanna D.ORCID,Waterman Melinda J.ORCID,Dunn JodieORCID,Robinson Sharon A.ORCID

Abstract

AbstractThe Antarctic environment is extremely cold, windy and dry. Ozone depletion has resulted in increasing ultraviolet-B radiation, and increasing greenhouse gases and decreasing stratospheric ozone have altered Antarctica’s climate. How do mosses thrive photosynthetically in this harsh environment? Antarctic mosses take advantage of microclimates where the combination of protection from wind, sufficient melt water, nutrients from seabirds and optimal sunlight provides both photosynthetic energy and sufficient warmth for efficient metabolism. The amount of sunlight presents a challenge: more light creates warmer canopies which are optimal for photosynthetic enzymes but can contain excess light energy that could damage the photochemical apparatus. Antarctic mosses thus exhibit strong photoprotective potential in the form of xanthophyll cycle pigments. Conversion to zeaxanthin is high when conditions are most extreme, especially when water content is low. Antarctic mosses also produce UV screening compounds which are maintained in cell walls in some species and appear to protect from DNA damage under elevated UV-B radiation. These plants thus survive in one of the harshest places on Earth by taking advantage of the best real estate to optimise their metabolism. But survival is precarious and it remains to be seen if these strategies will still work as the Antarctic climate changes.

Funder

China Scholarship Council

Australian Research Council

Australian Antarctic Science Grant

Australian Government Research Training Program

Antarctic Science Foundation

The University of Wollongong

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Biochemistry,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3