A Green Fingerprint of Antarctica: Drones, Hyperspectral Imaging, and Machine Learning for Moss and Lichen Classification

Author:

Sandino Juan12ORCID,Bollard Barbara34ORCID,Doshi Ashray3,Randall Krystal34ORCID,Barthelemy Johan35ORCID,Robinson Sharon A.34ORCID,Gonzalez Felipe12ORCID

Affiliation:

1. Securing Antarctica’s Environmental Future, Queensland University of Technology, 2 George St, Brisbane City, QLD 4000, Australia

2. QUT Centre For Robotics, Queensland University of Technology, 2 George St, Brisbane City, QLD 4000, Australia

3. Securing Antarctica’s Environmental Future, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia

4. School of Earth, Atmospheric and Life Sciences, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia

5. NVIDIA, Santa Clara, CA 95051, USA

Abstract

Mapping Antarctic Specially Protected Areas (ASPAs) remains a critical yet challenging task, especially in extreme environments like Antarctica. Traditional methods are often cumbersome, expensive, and risky, with limited satellite data further hindering accuracy. This study addresses these challenges by developing a workflow that enables precise mapping and monitoring of vegetation in ASPAs. The processing pipeline of this workflow integrates small unmanned aerial vehicles (UAVs)—or drones—to collect hyperspectral and multispectral imagery (HSI and MSI), global navigation satellite system (GNSS) enhanced with real-time kinematics (RTK) to collect ground control points (GCPs), and supervised machine learning classifiers. This workflow was validated in the field by acquiring ground and aerial data at ASPA 135, Windmill Islands, East Antarctica. The data preparation phase involves a data fusion technique to integrate HSI and MSI data, achieving the collection of georeferenced HSI scans with a resolution of up to 0.3 cm/pixel. From these high-resolution HSI scans, a series of novel spectral indices were proposed to enhance the classification accuracy of the model. Model training was achieved using extreme gradient boosting (XGBoost), with four different combinations tested to identify the best fit for the data. The research results indicate the successful detection and mapping of moss and lichens, with an average accuracy of 95%. Optimised XGBoost models, particularly Model 3 and Model 4, demonstrate the applicability of the custom spectral indices to achieve high accuracy with reduced computing power requirements. The integration of these technologies results in significantly more accurate mapping compared to conventional methods. This workflow serves as a foundational step towards more extensive remote sensing applications in Antarctic and ASPA vegetation mapping, as well as in monitoring the impact of climate change on the Antarctic ecosystem.

Funder

Australian Research Council (ARC) SRIEAS

QUT Office for Scholarly Communication

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3