Estimating the Tour Length for the Close Enough Traveling Salesman Problem

Author:

Sinha Roy DebdattaORCID,Golden BruceORCID,Wang XingyinORCID,Wasil EdwardORCID

Abstract

We construct empirically based regression models for estimating the tour length in the Close Enough Traveling Salesman Problem (CETSP). In the CETSP, a customer is considered visited when the salesman visits any point in the customer’s service region. We build our models using as many as 14 independent variables on a set of 780 benchmark instances of the CETSP and compare the estimated tour lengths to the results from a Steiner zone heuristic. We validate our results on a new set of 234 instances that are similar to the 780 benchmark instances. We also generate results for a new set of 72 larger instances. Overall, our models fit the data well and do a very good job of estimating the tour length. In addition, we show that our modeling approach can be used to accurately estimate the optimal tour lengths for the CETSP.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3