Reducing Risks by Transporting Dangerous Cargo in Drones

Author:

Bridgelall RajORCID

Abstract

The transportation of dangerous goods by truck or railway multiplies the risk of harm to people and the environment when accidents occur. Many manufacturers are developing autonomous drones that can fly heavy cargo and safely integrate into the national air space. Those developments present an opportunity to not only diminish risk but also to decrease cost and ground traffic congestion by moving certain types of dangerous cargo by air. This work identified a minimal set of metropolitan areas where initial cargo drone deployments would be the most impactful in demonstrating the safety, efficiency, and environmental benefits of this technology. The contribution is a new hybrid data mining workflow that combines unsupervised machine learning (UML) and geospatial information system (GIS) techniques to inform managerial or investment decision making. The data mining and UML techniques transformed comprehensive origin–destination records of more than 40 commodity category movements to identify a minimal set of metropolitan statistical areas (MSAs) with the greatest demand for transporting dangerous goods. The GIS part of the workflow determined the geodesic distances between and within all pairwise combinations of MSAs in the continental United States. The case study of applying the workflow to a commodity category of dangerous goods revealed that cargo drone deployments in only nine MSAs in four U.S. states can transport 38% of those commodities within 400 miles. The analysis concludes that future cargo drone technology has the potential to replace the equivalent of 4.7 million North American semitrailer trucks that currently move dangerous cargo through populated communities.

Funder

United States Department of Transportation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3