Neural Network Estimators for Optimal Tour Lengths of Traveling Salesperson Problem Instances with Arbitrary Node Distributions

Author:

Varol Taha1ORCID,Özener Okan Örsan2ORCID,Albey Erinç2ORCID

Affiliation:

1. Graduate School of Engineering and Science, Özyeǧin University, 34794 Istanbul, Turkey;

2. Department of Industrial Engineering, Özyeǧin University, 34794 Istanbul, Turkey

Abstract

It is essential to solve complex routing problems to achieve operational efficiency in logistics. However, because of their complexity, these problems are often tackled sequentially using cluster-first, route-second frameworks. Unfortunately, such two-phase frameworks can suffer from suboptimality due to the initial phase. To address this issue, we propose leveraging information about the optimal tour lengths of potential clusters as a preliminary step, transforming the two-phase approach into a less myopic solution framework. We introduce quick and highly accurate Traveling Salesperson Problem (TSP) tour length estimators based on neural networks (NNs) to facilitate this. Our approach combines the power of NNs and theoretical knowledge in the routing domain, utilizing a novel feature set that includes node-level, instance-level, and solution-level features. This hybridization of data and domain knowledge allows us to achieve predictions with an average deviation of less than 0.7% from optimality. Unlike previous studies, we design and employ new instances replicating real-life logistics networks and morphologies. These instances possess characteristics that introduce significant computational costs, making them more challenging. To address these challenges, we develop a novel and efficient method for obtaining lower bounds and partial solutions to the TSP, which are subsequently utilized as solution-level predictors. Our computational study demonstrates a prediction error up to six times lower than the best machine learning (ML) methods on their training instances and up to 100 times lower prediction error on out-of-distribution test instances. Furthermore, we integrate our proposed ML models with metaheuristics to create an enumeration-like solution framework, enabling the improved solution of massive-scale routing problems. In terms of solution time and quality, our approach significantly outperforms the state-of-the-art solver, demonstrating the potential of our features, models, and the proposed method. History: This paper has been accepted for the Transportation Science Special Issue on Machine Learning Methods and Applications in Large-Scale Route Planning Problems. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.0015 .

Publisher

Institute for Operations Research and the Management Sciences (INFORMS)

Subject

Transportation,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3