Trajectory Prediction with Attention-Based Spatial–Temporal Graph Convolutional Networks for Autonomous Driving

Author:

Li Hongbo12,Ren Yilong12ORCID,Li Kaixuan1,Chao Wenjie1

Affiliation:

1. School of Transportation Science and Engineering, Beihang University, Beijing 100191, China

2. Zhongguancun Laboratory, Beijing 100094, China

Abstract

Accurate and reliable trajectory prediction is crucial for autonomous vehicles to achieve safe and efficient operation. Vehicles perceive the historical trajectories of moving objects and make predictions of behavioral intentions for a future period of time. With the predicted trajectories of moving objects such as obstacle vehicles, pedestrians, and non-motorized vehicles as inputs, self-driving vehicles can make more rational driving decisions and plan more reasonable and safe vehicle motion behaviors. However, due to traffic environments such as intersection scenes with highly interdependent and dynamic attributes, the task of motion anticipation becomes challenging. Existing works focus on the mutual relationships among vehicles while ignoring other potential essential interactions such as vehicle–traffic rules. These studies have not yet deeply explored the intensive learning of interactions between multi-agents, which may result in evaluation deviations. Aiming to meet these issues, we have designed a novel framework, namely trajectory prediction with attention-based spatial–temporal graph convolutional networks (TPASTGCN). In our proposal, the multi-agent interaction mechanisms, including vehicle–vehicle and vehicle–traffic rules, are meticulously highlighted and integrated into one homogeneous graph by transferring the time-series data of traffic lights into the spatial–temporal domains. Through integrating the attention mechanism into the adjacency matrix, we effectively learn the different strengths of interactive association and improve the model’s ability to capture critical features. Simultaneously, we construct a hierarchical structure employing the spatial GCN and temporal GCN to extract the spatial dependencies of traffic networks. Profiting from the gated recurrent unit (GRU), the scene context in temporal dimensions is further attained and enhanced with the encoder. In such a way, the GCN and GRU networks are fused as a features extractor module in the proposed framework. Finally, the future potential trajectories generation tasks are performed by another GRU network. Experiments on real-world datasets demonstrate the superior performance of the scheme compared with several baselines.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3