From Movements to Metrics: Evaluating Explainable AI Methods in Skeleton-Based Human Activity Recognition

Author:

Pellano Kimji N.1ORCID,Strümke Inga2ORCID,Ihlen Espen A. F.1ORCID

Affiliation:

1. Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway

2. Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, 7034 Trondheim, Norway

Abstract

The advancement of deep learning in human activity recognition (HAR) using 3D skeleton data is critical for applications in healthcare, security, sports, and human–computer interaction. This paper tackles a well-known gap in the field, which is the lack of testing in the applicability and reliability of XAI evaluation metrics in the skeleton-based HAR domain. We have tested established XAI metrics, namely faithfulness and stability on Class Activation Mapping (CAM) and Gradient-weighted Class Activation Mapping (Grad-CAM) to address this problem. This study introduces a perturbation method that produces variations within the error tolerance of motion sensor tracking, ensuring the resultant skeletal data points remain within the plausible output range of human movement as captured by the tracking device. We used the NTU RGB+D 60 dataset and the EfficientGCN architecture for HAR model training and testing. The evaluation involved systematically perturbing the 3D skeleton data by applying controlled displacements at different magnitudes to assess the impact on XAI metric performance across multiple action classes. Our findings reveal that faithfulness may not consistently serve as a reliable metric across all classes for the EfficientGCN model, indicating its limited applicability in certain contexts. In contrast, stability proves to be a more robust metric, showing dependability across different perturbation magnitudes. Additionally, CAM and Grad-CAM yielded almost identical explanations, leading to closely similar metric outcomes. This suggests a need for the exploration of additional metrics and the application of more diverse XAI methods to broaden the understanding and effectiveness of XAI in skeleton-based HAR.

Funder

Research Council of Norway

European Union

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3