Skeleton-based motion prediction: A survey

Author:

Usman Muhammad,Zhong Jianqi

Abstract

Human motion prediction based on 3D skeleton data is an active research topic in computer vision and multimedia analysis, which involves many disciplines, such as image processing, pattern recognition, and artificial intelligence. As an effective representation of human motion, human 3D skeleton data is favored by researchers because it provide resistant to light effects, scene changes, etc. earlier studies on human motion prediction focuses mainly on RBG data-based techniques. In recent years, researchers have proposed the fusion of human skeleton data and depth learning methods for human motion prediction and achieved good results. We first introduced human motion prediction research background and significance in this survey. We then summarized the latest deep learning-based techniques for predicting human motion in recent years. Finally, a detailed paper review and future development discussion are provided.

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Reference43 articles.

1. “Social LSTM: human trajectory prediction in crowded spaces,”;Alahi;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016

2. “Long-term on-board prediction of people in traffic scenes under uncertainty,”;Bhattacharyya;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018

3. 3D point cloud processing and learning for autonomous driving: Impacting map creation, localization, and perception;Chen;IEEE Signal Process. Mag,2021

4. “Learning dynamic relationships for 3D human motion prediction,”;Cui;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3