Abstract
In this paper, we propose a new method for detecting abnormal human behavior based on skeleton features using self-attention augment graph convolution. The skeleton data have been proved to be robust to the complex background, illumination changes, and dynamic camera scenes and are naturally constructed as a graph in non-Euclidean space. Particularly, the establishment of spatial temporal graph convolutional networks (ST-GCN) can effectively learn the spatio-temporal relationships of Non-Euclidean Structure Data. However, it only operates on local neighborhood nodes and thereby lacks global information. We propose a novel spatial temporal self-attention augmented graph convolutional networks (SAA-Graph) by combining improved spatial graph convolution operator with a modified transformer self-attention operator to capture both local and global information of the joints. The spatial self-attention augmented module is used to understand the intra-frame relationships between human body parts. As far as we know, we are the first group to utilize self-attention for video anomaly detection tasks by enhancing spatial temporal graph convolution. Moreover, to validate the proposed model, we performed extensive experiments on two large-scale publicly standard datasets (i.e., ShanghaiTech Campus and CUHK Avenue datasets) which reveal the state-of-art performance for our proposed approach when compared to existing skeleton-based methods and graph convolution methods.
Funder
National key Research and development program of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献