A Self-Attention Augmented Graph Convolutional Clustering Networks for Skeleton-Based Video Anomaly Behavior Detection

Author:

Liu ChengmingORCID,Fu Ronghua,Li Yinghao,Gao Yufei,Shi LeiORCID,Li Weiwei

Abstract

In this paper, we propose a new method for detecting abnormal human behavior based on skeleton features using self-attention augment graph convolution. The skeleton data have been proved to be robust to the complex background, illumination changes, and dynamic camera scenes and are naturally constructed as a graph in non-Euclidean space. Particularly, the establishment of spatial temporal graph convolutional networks (ST-GCN) can effectively learn the spatio-temporal relationships of Non-Euclidean Structure Data. However, it only operates on local neighborhood nodes and thereby lacks global information. We propose a novel spatial temporal self-attention augmented graph convolutional networks (SAA-Graph) by combining improved spatial graph convolution operator with a modified transformer self-attention operator to capture both local and global information of the joints. The spatial self-attention augmented module is used to understand the intra-frame relationships between human body parts. As far as we know, we are the first group to utilize self-attention for video anomaly detection tasks by enhancing spatial temporal graph convolution. Moreover, to validate the proposed model, we performed extensive experiments on two large-scale publicly standard datasets (i.e., ShanghaiTech Campus and CUHK Avenue datasets) which reveal the state-of-art performance for our proposed approach when compared to existing skeleton-based methods and graph convolution methods.

Funder

National key Research and development program of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference36 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3