Development and Experimental Validation of an Intelligent Camera Model for Automated Driving

Author:

Genser SimonORCID,Muckenhuber StefanORCID,Solmaz SelimORCID,Reckenzaun JakobORCID

Abstract

The virtual testing and validation of advanced driver assistance system and automated driving (ADAS/AD) functions require efficient and realistic perception sensor models. In particular, the limitations and measurement errors of real perception sensors need to be simulated realistically in order to generate useful sensor data for the ADAS/AD function under test. In this paper, a novel sensor modeling approach for automotive perception sensors is introduced. The novel approach combines kernel density estimation with regression modeling and puts the main focus on the position measurement errors. The modeling approach is designed for any automotive perception sensor that provides position estimations at the object level. To demonstrate and evaluate the new approach, a common state-of-the-art automotive camera (Mobileye 630) was considered. Both sensor measurements (Mobileye position estimations) and ground-truth data (DGPS positions of all attending vehicles) were collected during a large measurement campaign on a Hungarian highway to support the development and experimental validation of the new approach. The quality of the model was tested and compared to reference measurements, leading to a pointwise position error of 9.60% in the lateral and 1.57% in the longitudinal direction. Additionally, the modeling of the natural scattering of the sensor model output was satisfying. In particular, the deviations of the position measurements were well modeled with this approach.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference48 articles.

1. https://apps.who.int/iris/bitstream/handle/10665/276462/9789241565684-eng.pdf

2. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations

3. Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations

4. Automated Driving: Safer and More Efficient Future Driving,2016

5. Ground Vehicle Standard J3016_201806https://saemobilus.sae.org/content/j3016_201806

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3