Bayesian Gaussian Mixture Models for Enhanced Radar Sensor Modeling: A Data-Driven Approach towards Sensor Simulation for ADAS/AD Development

Author:

Walenta Kelvin12ORCID,Genser Simon1ORCID,Solmaz Selim1ORCID

Affiliation:

1. Virtual Vehicle Research GmbH, Inffeldgasse 21a, 8010 Graz, Austria

2. Institute of Theoretical and Computational Physics, Petersgasse 16, 8010 Graz, Austria

Abstract

In the realm of road safety and the evolution toward automated driving, Advanced Driver Assistance and Automated Driving (ADAS/AD) systems play a pivotal role. As the complexity of these systems grows, comprehensive testing becomes imperative, with virtual test environments becoming crucial, especially for handling diverse and challenging scenarios. Radar sensors are integral to ADAS/AD units and are known for their robust performance even in adverse conditions. However, accurately modeling the radar’s perception, particularly the radar cross-section (RCS), proves challenging. This paper adopts a data-driven approach, using Gaussian mixture models (GMMs) to model the radar’s perception for various vehicles and aspect angles. A Bayesian variational approach automatically infers model complexity. The model is expanded into a comprehensive radar sensor model based on object lists, incorporating occlusion effects and RCS-based detectability decisions. The model’s effectiveness is demonstrated through accurate reproduction of the RCS behavior and scatter point distribution. The full capabilities of the sensor model are demonstrated in different scenarios. The flexible and modular framework has proven apt for modeling specific aspects and allows for an easy model extension. Simultaneously, alongside model extension, more extensive validation is proposed to refine accuracy and broaden the model’s applicability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3