Changes in Abrasive Wear Resistance during Miller Test of High-Manganese Cast Steel with Niobium Carbides Formed in the Alloy Matrix

Author:

Tęcza GrzegorzORCID

Abstract

High-manganese Hadfield cast steel is commonly used for machine components operating under dynamic load conditions. The high fracture toughness and abrasive wear resistance of this steel are the result of an austenitic structure, which—while being ductile—at the same time tends to surface harden under the effect of cold work. Absence of dynamic loads (e.g., in the case of sand abrasion) causes rapid and premature wear of parts. To improve the abrasive wear resistance of high-manganese cast steel for operation under the conditions free from dynamic loads, primary niobium carbides are produced in this cast steel during the melting process to obtain in castings, after melt solidification, the microstructure consisting of an austenitic matrix and primary niobium carbides uniformly distributed in this matrix. The measured hardness of the tested samples as cast and after solution heat treatment is 260–290 HV and is about 30–60 HV higher than the hardness of common Hadfield cast steel, which is 230 HV. Compared to common Hadfield cast steel, the abrasive wear resistance of the tested high-manganese cast steel measured in the Miller test is at least three times higher at the niobium content of 3.5 wt%. Increasing the niobium content to 4.5 wt%. in the tested samples increases this wear resistance even more.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference14 articles.

1. Austenityczne Staliwo Manganowe (Austenitic Manganese Cast Steel);Kniaginin,1968

2. RETRACTED: Development of high-manganese steels for heavy duty cast-to-shape applications

3. Odlewy ze Stali Stopowej–Zastosowanie (Castings from Alloy Steel–Applications);Głownia,2002

4. Effect of heat treatment on change microstructure of cast high-manganese hadfield steel with elevated chromium content;Tęcza;Arch. Foundry Eng.,2014

5. Tools Cast from The Steel of Composite Structure

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3