Enhanced Abrasion Resistance of Spark Plasma Sintered and HVOF Sprayed Hadfield High Manganese Steel by Turning and Diamond Smoothing

Author:

Lindner ThomasORCID,Liborius Hendrik,Preuß Bianca,Hanisch Niclas,Schubert AndreasORCID,Lampke ThomasORCID

Abstract

Austenitic high-manganese steels (HMnS) offer very high wear resistance under dynamic loading due to their high work hardening capacity. However, resistance to static abrasive loading is limited. Various approaches to increasing abrasion resistance are known from traditionally manufactured metallurgical components. These confirm the high potential for surface protection applications. In this work, the powder of the Hadfield HMnS X120Mn12 is prepared and processed by high-velocity oxy-fuel (HVOF) spraying and spark-plasma sintering (SPS). A good correlation was observed between the results of the HVOF and SPS specimen. Different surface conditions of the coatings and the sintered specimens were prepared by machining. Compared to the polished state, turning and diamond smoothing can increase the surface hardness from 220 HV to over 700 HV significantly. Regardless of the surface finish condition, similar good wear resistance can be demonstrated due to strong work hardening under sliding and reciprocating wear loading. In contrast, the finish machining process clearly influences abrasion resistance in the scratch test with the best results for the diamond smoothed condition. Especially against the background of current trends toward alternative coating systems, the presented results offer a promising approach for the development of HMnS in the field of coating technology.

Funder

Development Bank of Saxony

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3