CFD Analysis of the Fuel–Air Mixture Formation Process in Passive Prechambers for Use in a High-Pressure Direct Injection (HPDI) Two-Stroke Engine

Author:

Ciampolini Marco,Bigalli Simone,Balduzzi Francesco,Bianchini AlessandroORCID,Romani Luca,Ferrara GiovanniORCID

Abstract

The research on two-stroke engines has been focused lately on the development of direct injection systems for reducing the emissions of hydrocarbons by minimizing the fuel short-circuiting. Low temperature combustion (LTC) may be the next step to further improve emissions and fuel consumption; however, LTC requires unconventional ignition systems. Jet ignition, i.e., the use of prechambers to accelerate the combustion process, turned out to be an effective way to perform LTC. The present work aims at proving the feasibility of adopting passive prechambers in a high-pressure, direct injection, two-stroke engine through non-reactive computational fluid dynamics analyses. The goal of the analysis is the evaluation of the prechamber performance in terms of both scavenging efficiency of burnt gases and fuel/air mixture formation inside the prechamber volume itself, in order to guarantee the mixture ignitability. Two prechamber geometries, featuring different aspect ratios and orifice numbers, were investigated. The analyses were replicated for two different locations of the injection and for three operating conditions of the engine in terms of revolution speed and load. Upon examination of the results, the effectiveness of both prechambers was found to be strongly dependent on the injection setup.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference45 articles.

1. Cyclic Variation Due to Misfiring in a Small Two-Stroke Engine;Ohira,1996

2. Development of a Low Pressure Direct Injection System for a Small 2S Engine. Part II—Experimental Analysis of the Engine Performance and Pollutant Emissions;Romani,2015

3. Fine-tuning of a two stoke engine in full power configuration provided with a Low Pressure Direct Injection system

4. Development of a Low Pressure Direct Injection System for a Small 2S Engine. Part I - CFD Analysis of the Injection Process

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3