Investigation on the lean-combustion characteristics of non-uniform orifice pre-chamber spark plug in low engine speed working conditions compared with high energy spark ignition

Author:

Tang Yuanzhi1ORCID,Lou Diming1,Fang Liang1,Wu Xijiang2,Wang Zhiyu2,Zhang Yunhua1

Affiliation:

1. School of Automotive Studies, Tongji University, Shanghai, China

2. SAIC MOTOR R&D innovation headquarters, SAIC Motor Corporation Limited, Shanghai, China

Abstract

For a long time, pre-chamber jet ignition has been an effective method to achieve stable lean-combustion of the engine. However, due to the lack of an additional fuel injector, the passive pre-chamber easily leads to unstable combustion and even misfires during the engine’s low-speed working conditions. This study used simulation and optical single-cylinder engine visualization experiments to investigate the ignition and combustion performance of the pre-chamber spark plug (PCSP) ignition system and different orientations of the scavenging jet nozzle in the cylinder. The results indicate that the PCSP at low speed (1200 r/min) can improve the lean-combustion load performance by up to 6.7% compared with traditional high-energy spark ignition but cannot significantly improve the lean combustion limit and stability. In addition, under each λ condition, the scavenging jet nozzle face toward one of the intake valves (IV2) is most advantageous. The effect of lean combustion on reducing NO began to manifest after λ > 1.3 and achieved the best at 1.6. This kind of jet ignition pre-chamber provides a more stable ignition solution than high-energy spark ignition for low speed and medium/low load aspects.

Funder

National Key Research and Development Program of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3