Abstract
A path following control strategy for a four-wheel-independent-drive electrical vehicle (4WID-EV) based on backstepping and model predictive control is presented, which can ensure the accuracy of path following and maintain vehicle stability simultaneously. Firstly, a 2-DOF vehicle dynamic model and a path following error model are built and the desired yaw rate is obtained through backstepping. Then, a model predictive controller is adopted to track the desired yaw rate and obtain the optimal front wheel steering and external yaw moment. Meanwhile, an optimal torque distribution algorithm is carried out to allocate it to each tire. Finally, the effectiveness and superiority of the strategy is validated via CarSim–Simulink joint simulation. Results show that the strategy has higher following accuracy, smaller sideslip angle, and better yaw rate tracking.
Funder
University Natural Science Research Project of Anhui Province
Anhui Provincial Quality Engineering Project
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献