Experimental Evaluation of Industrial Mushroom Waste Substrate Using Hybrid Mechanism of Vermicomposting and Effective Microorganisms

Author:

Ansari KhalidORCID,Khandeshwar Shantanu,Waghmare Charuta,Mehboob HassanORCID,Gupta Tripti,Shrikhande Avinash N.,Abbas MohamedORCID

Abstract

Mushroom waste substrates are highly resistant lignocellulosic wastes that are commercially produced by industries after harvesting. These wastes produce large environmental challenges regarding disposal and, thus, require treatment facilities. In the present article, the effect of Eisenia-fetida-based vermicomposting and an effective microorganism solution on the mushroom waste substrate were investigated using four different composting mixtures: mushroom waste [MW] substrate composting with effective microorganisms [MW+EM], raw mushroom waste [RWM] substrate composting with effective microorganisms [RMW+EM], mushroom waste substrate composting with vermicomposting and effective microorganisms [MW+V+EM], and raw mushroom waste substrate composting with vermicomposting and effective microorganisms [RWM+V+EM]. This article discusses the structural and physiochemical changes at four samples for 45 days (almost six weeks) of composting. The physical and chemical parameters were monitored during composting and provided information on the duration of the process. The results indicated pH (7.2~8), NPK value (0.9~1.8), and C:N ratio <14, and heavy metals exhibited a decreasing trend in later stages for all sets of compost materials and showed the maturity level. FTIR spectra revealed that all four samples included peaks for the -OH (hydroxy group) ranging from 3780 to 3500 cm−1 and a ridge indicating the C=C (alkenyl bond) ranging from 1650 to 1620 cm−1 in compost. The X-ray diffraction spectrum clearly shows how earthworms and microbes break down molecules into cellulose compounds, and the average crystallinity size using Scherrer’s equation was found to be between 69.82 and 93.13 nm. Based on the experimental analysis, [RWM+V+EM] accelerated the breakdown of organic matter and showed improvement compared with other composts in compostable materials, thus, emphasizing the critical nature of long-term mushroom waste management and treatment.

Publisher

MDPI AG

Subject

General Materials Science

Reference57 articles.

1. Potential of spent mushroom substrate in vermicomposting;Na;Vermitechnol. I. Dyn. Soil Dyn. Plant,2009

2. Nutritional properties of edible fungi

3. Fourier Transform Infrared Spectroscopy of Aerosol Collected in a Low Pressure Impactor (LPI/FTIR): Method Development and Field Calibration

4. Evaluation of Effective Microorganisms on home scale organic waste composting

5. The effect of spent mushroom compost and inorganic fertilizer on yield and nutrient uptake by wheat;Sangwan;J. Indian Soc. Soil Sci.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3