ESPEE: Event-Based Sensor Pose Estimation Using an Extended Kalman Filter

Author:

Colonnier FabienORCID,Della Vedova Luca,Orchard GarrickORCID

Abstract

Event-based vision sensors show great promise for use in embedded applications requiring low-latency passive sensing at a low computational cost. In this paper, we present an event-based algorithm that relies on an Extended Kalman Filter for 6-Degree of Freedom sensor pose estimation. The algorithm updates the sensor pose event-by-event with low latency (worst case of less than 2 μs on an FPGA). Using a single handheld sensor, we test the algorithm on multiple recordings, ranging from a high contrast printed planar scene to a more natural scene consisting of objects viewed from above. The pose is accurately estimated under rapid motions, up to 2.7 m/s. Thereafter, an extension to multiple sensors is described and tested, highlighting the improved performance of such a setup, as well as the integration with an off-the-shelf mapping algorithm to allow point cloud updates with a 3D scene and enhance the potential applications of this visual odometry solution.

Funder

Singapore govern- ment’s Research, Innovation and Enterprise 2020 plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3