Denoising Method Based on Salient Region Recognition for the Spatiotemporal Event Stream

Author:

Tang Sichao12ORCID,Lv Hengyi1,Zhao Yuchen1,Feng Yang1,Liu Hailong1,Bi Guoling1

Affiliation:

1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China

2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Event cameras are the emerging bio-mimetic sensors with microsecond-level responsiveness in recent years, also known as dynamic vision sensors. Due to the inherent sensitivity of event camera hardware to light sources and interference from various external factors, various types of noises are inevitably present in the camera’s output results. This noise can degrade the camera’s perception of events and the performance of algorithms for processing event streams. Moreover, since the output of event cameras is in the form of address-event representation, efficient denoising methods for traditional frame images are no longer applicable in this case. Most existing denoising methods for event cameras target background activity noise and sometimes remove real events as noise. Furthermore, these methods are ineffective in handling noise generated by high-frequency flickering light sources and changes in diffused light reflection. To address these issues, we propose an event stream denoising method based on salient region recognition in this paper. This method can effectively remove conventional background activity noise as well as irregular noise caused by diffuse reflection and flickering light source changes without significantly losing real events. Additionally, we introduce an evaluation metric that can be used to assess the noise removal efficacy and the preservation of real events for various denoising methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference43 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3