Feature Fusion Based on Graph Convolution Network for Modulation Classification in Underwater Communication

Author:

Yao Xiaohui1ORCID,Yang Honghui1ORCID,Sheng Meiping1ORCID

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Automatic modulation classification (AMC) of underwater acoustic communication signals is of great significance in national defense and marine military. Accurate modulation classification methods can make great contributions to accurately grasping the parameters and characteristics of enemy communication systems. While a poor underwater acoustic channel makes it difficult to classify the modulation types correctly. Feature extraction and deep learning methods have proven to be effective methods for the modulation classification of underwater acoustic communication signals, but their performance is still limited by the complex underwater communication environment. Graph convolution networks (GCN) can learn the graph structured information of the data, making it an effective method for processing structured data. To improve the stability and robustness of AMC in underwater channels, we combined the feature extraction and deep learning methods by fusing the multi-domain features and deep features using GCN. The proposed method takes the relationships among the different multi-domain features and deep features into account. Firstly, a feature graph was built using the properties of the features. Secondly, multi-domain features were extracted from the received signals and deep features were extracted from the signals using a deep neural network. Thirdly, we constructed the input of GCN using these features and the graph. Then, the multi-domain features and deep features were fused by the GCN. Finally, we classified the modulation types using the output of GCN by way of a softmax layer. We conducted the experiments on a simulated dataset and a real-world dataset, respectively. The results show that the AMC based on GCN can achieve a significant improvement in performance compared to the current state-of-the-art methods. Our approach is robust in underwater acoustic channels.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3