A New Modulation Recognition Method Based on Wavelet Transform and High-order Cumulants

Author:

Chen Wenxuan,Jiang Yuan,Zhang Lin,Zhang Yang

Abstract

Abstract In order to improve the recognition performance of digital modulated signals under low signal-to-noise ratio, this paper proposes a new method that combines high-order cumulants and wavelet transform to extract transient features, and the recognition of six kinds of modulation signals is realized through the neural network classifier. Simulation results show that the proposed algorithm can achieve good performance under low signal-to-noise ratio. In addition, only three key features are selected in this method, which greatly reduces the complexity of the algorithm. Furthermore, the effects of sample rate, carrier frequency and symbol rate on recognition performance are analyzed and simulated for the sake of better recognition performance.

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference10 articles.

1. Identification of digital modulation types using the wavelet transform;Liang,1999

2. Modulation type classification method using wavelet transform for adaptive modulator;Jin,2004

3. A New Modulation Identification Scheme for OFDM in Multipath Rayleigh Fading Channel;Zhang,2008

4. A robust higher-order cyclic cumulants feature-based vector for QAM classification;Jayatunga,2014

5. Fast identification of amplitude modulated signals at low SNR;Wei,2005

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3