Automatic Modulation Classification for Underwater Acoustic Communication Signals Based on Deep Complex Networks

Author:

Yao Xiaohui1ORCID,Yang Honghui1ORCID,Sheng Meiping1ORCID

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710060, China

Abstract

Automatic modulation classification (AMC) is an important method for monitoring and identifying any underwater communication interference. Since the underwater acoustic communication scenario is full of multi-path fading and ocean ambient noise (OAN), coupled with the application of modern communication technology, which is usually susceptible to environmental influences, automatic modulation classification (AMC) becomes particularly difficult when it comes to an underwater scenario. Motivated by the deep complex networks (DCN), which have an innate ability to process complex data, we explore DCN for AMC of underwater acoustic communication signals. To integrate the signal processing method with deep learning and overcome the influences of underwater acoustic channels, we propose two complex physical signal processing layers based on DCN. The proposed layers include a deep complex matched filter (DCMF) and deep complex channel equalizer (DCCE), which are designed to remove noise and reduce the influence of multi-path fading for the received signals, respectively. Hierarchical DCN is constructed using the proposed method to achieve better performance of AMC. The influence of the real-world underwater acoustic communication scenario is taken into account; two underwater acoustic multi-path fading channels are conducted using the real-world ocean observation dataset, white Gaussian noise, and real-world OAN are used as the additive noise, respectively. Contrastive experiments show that the AMC based on DCN can achieve better performance than the traditional deep neural network based on real value (the average accuracy of the DCN is 5.3% higher than real-valued DNN). The proposed method based on DCN can effectively reduce the influence of underwater acoustic channels and improve the AMC performance in different underwater acoustic channels. The performance of the proposed method was verified on the real-world dataset. In the underwater acoustic channels, the proposed method outperforms a series of advanced AMC method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3