Effect of Photoinitiator Concentration and Film Thickness on the Properties of UV-Curable Self-Matting Coating for Wood-Based Panels

Author:

Zhang Haiqiao12ORCID,Feng Xinhao12ORCID,Wu Yan12ORCID,Wu Zhihui12ORCID

Affiliation:

1. College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China

2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210037, China

Abstract

Matte coatings have found wide-ranging applications across diverse industries. In this study, self-matting films with surface wrinkles were produced by exposing UV-curable polyurethane acrylate (UV-WPUA) resin to 172 nm Xe2* excimer and medium-pressure mercury lamps. The gloss values, micromorphologies, water contact angles (WCAs), roughness values, and friction behaviors of UV-WPUA films with different photoinitiator (PI) concentrations and thickness were investigated for the first time. The results indicate that the gloss values of the films at the same thickness enhance with the increase of PI concentration, while the amplitude of wrinkles, roughness, and WCAs decrease; however, the friction coefficient shows insignificant variations. While the PI concentration is unchanged, an increase in film thickness results in a decrease in gloss value and an increase in roughness and friction coefficient. Nevertheless, the WCA is relatively constant. The PI concentration of 0.5 wt% (lowest gloss value of cured film) was utilized to prepare the UV-WPUA wood coating. The cured coating film exhibited low gloss (4.9 GU at 60° and 5.2 GU at 85°) and outstanding mechanical properties, including 3H pencil hardness, grade 0 adhesion, excellent wear resistance, and tensile property. These findings can be utilized to guide the development of self-matting wood coatings and the production of wood-based panels used in industrial finishing.

Funder

National Key Research & Development Program of China

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3