Effect of Glow-Discharge Plasma Treatment on Contact Angle and Micromorphology of Bamboo Green Surface

Author:

Wang Xuehua,Cheng Kenneth J.ORCID

Abstract

The inner and outer surfaces of bamboo stems are usually removed prior to the manufacture of bamboo panels because the surfaces are hydrophobic and difficult to bond with glue. Hence, the recovery and utilization ratio of bamboo during processing is low. This study focused on using glow-discharge plasma to treat green bamboo surfaces to make them less hydrophobic. The effects of plasma treatment on green bamboo stems were examined using contact goniometry (wettability), non-contact confocal profilometry and scanning electron microscopy (SEM). Confocal profilometry and SEM revealed that the morphology of green bamboo surfaces varied between 3 different stems. Plasma was able to etch bamboo green surfaces, and make them rougher and more powdery. Plasma treatment was effective at converting green bamboo surfaces from hydrophobic (initial contact angle >110°) to hydrophilic (contact angle <20°). However, this effect was temporary and contact angle increased with time and recovered approximately 30% of its original value after 24 h. Based on our findings, we conclude that plasma treatment can alter parameters such as surface energy and roughness that could improve glue bonding of green bamboo, but delays between plasma treatment and further processing would need to be minimized.

Publisher

MDPI AG

Subject

Forestry

Reference42 articles.

1. Prediction of MOE of eucalypt wood from microfibril angle and density

2. Static strength characteristics (MOR and MOE) of Australian Pinus ponderosa wood from plantation: a comparison of green, dry and re-wet specimens: a technical note

3. Comparison of Physical-Mechanical Properties of Five Sympodial Bamboo Species;Yang;J. Northeast For. Univ.,2013

4. Mechanical and thermal properties of small diameter original bamboo reinforced extruded particleboard

5. Present condition of wood resources utilization in China and technical measures of wood recycle;Chen;China Wood-Based Panels,2007

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3