Affiliation:
1. Faculty of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China
2. Yunnan International Joint Laboratory of Intelligent Control and Application of Advanced Equipment, Kunming 650500, China
Abstract
To solve the problems of path planning and dynamic obstacle avoidance for an unmanned surface vehicle (USV) in a locally observable non-dynamic ocean environment, a visual perception and decision-making method based on deep reinforcement learning is proposed. This method replaces the full connection layer in the Proximal Policy Optimization (PPO) neural network structure with a convolutional neural network (CNN). In this way, the degree of memorization and forgetting of sample information is controlled. Moreover, this method accumulates reward models faster by preferentially learning samples with high reward values. From the USV-centered radar perception input of the local environment, the output of the action is realized through an end-to-end learning model, and the environment perception and decision are formed as a closed loop. Thus, the proposed algorithm has good adaptability in different marine environments. The simulation results show that, compared with the PPO algorithm, Soft Actor–Critic (SAC) algorithm, and Deep Q Network (DQN) algorithm, the proposed algorithm can accelerate the model convergence speed and improve the path planning performances in partly or fully unknown ocean fields.
Funder
National Nature Science Foundation
Yunnan Major Scientific and Technological Projects
Open Foundation of Key Laboratory in Software Engineering of Yunnan Province
Yunnan Fundamental Research Projects
Scientific Research Project of Yunnan Provincial Department of Education
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献